Додаток E — Список рекомендованої літератури
[1]
R.
V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, and J.
Kurths, Recurrence-based time
series analysis by means of complex network methods, International
Journal of Bifurcation and Chaos 21, 1019 (2011).
[2]
L.
Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuño, From time series to
complex networks: The visibility graph, Proceedings of the National
Academy of Sciences 105, 4972 (2008).
[3]
A.
O. Bielinskyi, O. A. Serdyuk, S. O. Semerikov, and V. N. Soloviev,
Econophysics of
Cryptocurrency Crashes: A Systematic Review, in Proceedings
of the Selected and Revised Papers of 9th International Conference on
Monitoring, Modeling & Management of Emergent Economy
(M3E2-MLPEED 2021), Odessa, Ukraine, May 26-28, 2021,
edited by A. E. Kiv, V. N. Soloviev, and S. O. Semerikov, Vol. 3048
(CEUR-WS.org, 2021), pp. 31–133.
[4]
B.
Luque, L. Lacasa, F. Ballesteros, and J. Luque, Horizontal visibility
graphs: Exact results for random time series, Phys. Rev. E
80, 046103 (2009).
[5]
X.
Lan, H. Mo, S. Chen, Q. Liu, and Y. Deng, Fast
transformation from time series to visibility graphs, Chaos:
An Interdisciplinary Journal of Nonlinear Science 25,
083105 (2015).
[6]
I.
V. Bezsudnov and A. A. Snarskii, From the time series
to the complex networks: The parametric natural visibility graph,
Physica A: Statistical Mechanics and Its Applications
414, 53 (2014).
[7]
T.
T. Zhou, N. D. Jin, Z. K. Gao, and Y. B. Luo, Limited penetrable
visibility graph for establishing complex network from time series,
Acta Physica Sinica 61, 2012-3-030506 (2012).
[8]
Q.
Xuan, J. Zhou, K. Qiu, D. Xu, S. Zheng, and X. Yang, CLPVG:
Circular limited penetrable visibility graph as a new network model for
time series, Chaos: An Interdisciplinary Journal of Nonlinear
Science 32, 013130 (2022).
[9]
F.
R. K. Chung, Spectral
Graph Theory (American Mathematical Society, 1997).
[10]
N.
Biggs, Spectral
graph theory (CBMS regional conference series in mathematics 92),
Bulletin of the London Mathematical Society 30, 197
(1998).
[11]
S.
Butler, Interlacing
for weighted graphs using the normalized laplacian, Electronic
Journal of Linear Algebra 16, 90 (2007).
[12]
G.
Bounova and O. de Weck, Overview of metrics
and their correlation patterns for multiple-metric topology analysis on
heterogeneous graph ensembles, Phys. Rev. E 85,
016117 (2012).
[13]
I.
Gutman, The energy of a graph, (1978).
[14]
W.
Jun, M. Barahona, T. Yue-Jin, and D. Hong-Zhong, Natural
connectivity of complex networks, Chinese Physics Letters
27, 078902 (2010).
[15]
E.
Estrada, Spectral
scaling and good expansion properties in complex networks,
Europhysics Letters 73, 649 (2006).
[16]
J.
Wu, M. Barahona, Y.-J. Tan, and H.-Z. Deng, Spectral measure of
structural robustness in complex networks, IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans
41, 1244 (2011).
[17]
D.
M. Cvetkovic, M. Doob, and H. Sachs, Spectra of graphs. Theory and
application, (1980).
[18]
A.
Berman and R. J. Plemmons, Nonnegative Matrices in
the Mathematical Sciences (Society for Industrial; Applied
Mathematics, 1994).
[19]
I.
J. Schoenberg, Publications of
Edmund Landau, in Number Theory and Analysis: A Collection
of Papers in Honor of Edmund Landau (1877–1938), edited by P. Turán
(Springer US, Boston, MA, 1969), pp. 335–355.
[20]
T.
H. Wei, The Algebraic Foundations of Ranking Theory (University
of Cambridge, 1952).
[21]
M.
G. Kendall, Further
contributions to the theory of paired comparisons, Biometrics
11, 43 (1955).
[22]
C.
Berge, Théorie Des Graphes Et Ses Applications (Dunod,
1958).
[23]
P.
Bonacich, Technique for
analyzing overlapping memberships, Sociological Methodology
4, 176 (1972).
[24]
Wikipedia, Arnoldi
iteration.
[25]
K.
Stephenson and M. Zelen, Rethinking
centrality: Methods and examples, Social Networks
11, 1 (1989).
[26]
V.
Latora and M. Marchiori, Efficient behavior
of small-world networks, Phys. Rev. Lett. 87,
198701 (2001).
[27]
R.
Pastor-Satorras, A. Vázquez, and A. Vespignani, Dynamical and
correlation properties of the internet, Phys. Rev. Lett.
87, 258701 (2001).
[28]
S.
Maslov and K. Sneppen, Specificity and stability
in topology of protein networks, Science 296, 910
(2002).
[29]
M.
E. J. Newman, Assortative mixing
in networks, Phys. Rev. Lett. 89, 208701
(2002).
[30]
D.
J. Watts and S. H. Strogatz, Collective dynamics of
’small-world’ networks, Nature 393, 440
(1998).
[31]
A.
Barrat and M. Weigt, On
the properties of small-world network models, The European Physical
Journal B-Condensed Matter and Complex Systems 13, 547
(2000).
[32]
S.
Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex networks:
Structure and dynamics, Physics Reports 424, 175
(2006).
[33]
P.
Holme, C. R. Edling, and F. Liljeros, Structure and time
evolution of an internet dating community, Social Networks
26, 155 (2004).
[34]
P.
Holme, F. Liljeros, C. R. Edling, and B. J. Kim, Network
bipartivity, Phys. Rev. E 68, 056107 (2003).
[35]
P.
G. Lind, M. C. González, and H. J. Herrmann, Cycles and clustering
in bipartite networks, Phys. Rev. E 72, 056127
(2005).
[36]
P.
Zhang, J. Wang, X. Li, M. Li, Z. Di, and Y. Fan, Clustering
coefficient and community structure of bipartite networks, Physica
A: Statistical Mechanics and Its Applications 387, 6869
(2008).
[37]
J.
S. Richman and J. R. Moorman, Physiological
time-series analysis using approximate entropy and sample entropy,
American Journal of Physiology-Heart and Circulatory Physiology
278, H2039 (2000).
[38]
C.
Bandt and B. Pompe, Permutation
entropy: A natural complexity measure for time series, Phys. Rev.
Lett. 88, 174102 (2002).
[39]
H.
Kantz and T. Schreiber, Nonlinear Time Series Analysis
(Cambridge University Press, 2004).
[40]
S.
J. Roberts, W. Penny, and I. Rezek, Temporal and spatial
complexity measures for electroencephalogram based brain-computer
interfacing, Medical & Biological Engineering & Computing
37, 93 (1999).
[41]
M.
Rostaghi and H. Azami, Dispersion entropy: A
measure for time-series analysis, IEEE Signal Processing Letters
23, 610 (2016).
[43]
S.
M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, A regularity statistic for
medical data analysis, Journal of Clinical Monitoring
7, 335 (1991).
[44]
S.
M. Pincus, Approximate
entropy as a measure of system complexity, Proceedings of the
National Academy of Sciences 88, 2297 (1991).
[45]
W.
Chen, Z. Wang, H. Xie, and W. Yu, Characterization of
surface EMG signal based on fuzzy entropy, IEEE Transactions on
Neural Systems and Rehabilitation Engineering 15, 266
(2007).
[46]
H.-B. Xie, W.-X. He, and H. Liu, Measuring time
series regularity using nonlinear similarity-based sample entropy,
Physics Letters A 372, 7140 (2008).
[47]
V.
Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral, and H. E.
Stanley, Universal
and nonuniversal properties of cross correlations in financial time
series, Phys. Rev. Lett. 83, 1471 (1999).
[48]
T.
Guhr, A. Müller–Groeling, and H. A. Weidenmüller, Random-matrix
theories in quantum physics: Common concepts, Physics Reports
299, 189 (1998).
[49]
Y.
V. Fyodorov and A. D. Mirlin, Analytical derivation
of the scaling law for the inverse participation ratio in
quasi-one-dimensional disordered systems, Phys. Rev. Lett.
69, 1093 (1992).
[50]
E.
P. Wigner, On the
statistical distribution of the widths and spacings of nuclear resonance
levels, Mathematical Proceedings of the Cambridge Philosophical
Society 47, 790 (1951).
[51]
E.
P. Wigner, On a class of
analytic functions from the quantum theory of collisions, Annals of
Mathematics 53, 36 (1951).
[52]
F.
J. Dyson, Statistical Theory of the Energy Levels of Complex
Systems. I, Journal of Mathematical Physics
3, 140 (2004).
[53]
F.
J. Dyson and M. L. Mehta, Statistical Theory of the Energy Levels of Complex
Systems. IV, Journal of Mathematical Physics
4, 701 (2004).
[54]
M.
L. Mehta and F. J. Dyson, Statistical Theory of the Energy Levels of Complex
Systems. V, Journal of Mathematical Physics
4, 713 (2004).
[55]
M.
L. Mehta, Random Matrices (Academic Press, 1991).
[56]
T.
A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M.
Wong, Random-matrix
physics: Spectrum and strength fluctuations, Rev. Mod. Phys.
53, 385 (1981).
[57]
L.
Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters, Noise dressing of
financial correlation matrices, Phys. Rev. Lett.
83, 1467 (1999).
[58]
Aspects of Multivariate
Statistical Theory (Wiley, New York, 1982).
[59]
F.
J. Dyson, Distribution of eigenvalues for a class of real symmetric
matrices, Revista Mexicana de Fisica 20, 231
(1971).
[60]
A.
M. Sengupta and P. P. Mitra, Distributions of
singular values for some random matrices, Phys. Rev. E
60, 3389 (1999).
[61]
C.
E. Shannon, A mathematical
theory of communication, Bell System Technical Journal
27, 379 (1948).
[62]
R.
A. Fisher and E. J. Russell, On the mathematical
foundations of theoretical statistics, Philosophical Transactions of
the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character 222, 309
(1922).
[63]
B.
Hjorth, EEG
analysis based on time domain properties, Electroencephalography and
Clinical Neurophysiology 29, 306 (1970).
[64]
F.
Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C.
E. Elger, and K. Lehnertz, On the
predictability of epileptic seizures, Clinical Neurophysiology
116, 569 (2005).
[65]
V.
Marmelat, K. Torre, and D. Delignieres, Relative roughness: An
index for testing the suitability of the monofractal model,
Frontiers in Physiology 3, (2012).
[66]
T.
M. Cover, Elements of Information Theory (John Wiley &
Sons, 1999).
[67]
A.
N. Kolmogorov, Three
approaches to the quantitative definition of information,
International Journal of Computer Mathematics 2, 157
(1968).
[68]
M.
S. Kanwal, J. A. Grochow, and N. Ay, Comparing information-theoretic
measures of complexity in boltzmann machines, Entropy
19, (2017).
[69]
M.
Li and P. Vitányi, Preliminaries,
in An Introduction to Kolmogorov Complexity and Its
Applications (Springer New York, New York, NY, 2008), pp.
1–99.
[70]
D.
G. Bonchev, Information
Theoretic Complexity Measures, in Encyclopedia of
Complexity and Systems Science, edited by R. A. Meyers (Springer
New York, New York, NY, 2009), pp. 4820–4839.
[71]
L.
T. Lui, G. Terrazas, H. Zenil, C. Alexander, and N. Krasnogor, Complexity Measurement Based on Information Theory and
Kolmogorov Complexity, Artificial Life 21,
205 (2015).
[72]
J.-L. Blanc, L. Pezard, and A. Lesne, Delay independence of
mutual-information rate of two symbolic sequences, Phys. Rev. E
84, 036214 (2011).
[73]
S.
Zozor, P. Ravier, and O. Buttelli, On lempel–ziv
complexity for multidimensional data analysis, Physica A:
Statistical Mechanics and Its Applications 345, 285
(2005).
[74]
E.
Estevez-Rams, R. Lora Serrano, B. Aragón Fernández, and I. Brito Reyes,
On the
non-randomness of maximum Lempel Ziv complexity sequences of finite
size, Chaos: An Interdisciplinary Journal of Nonlinear
Science 23, 023118 (2013).
[75]
A.
Lempel and J. Ziv, On
the complexity of finite sequences, IEEE Transactions on Information
Theory 22, 75 (1976).
[76]
R.
Giglio, R. Matsushita, A. Figueiredo, I. Gleria, and S. D. Silva, Algorithmic complexity
theory and the relative efficiency of financial markets, Europhysics
Letters 84, 48005 (2008).
[77]
C.
Taufemback, R. Giglio, and S. D. Silva, Algorithmic complexity theory detects decreases in the
relative efficiency of stock markets in the aftermath of the 2008
financial crisis, Economics Bulletin 31,
1631 (2011).
[78]
R.
Giglio and S. Da Silva, Ranking the
Stocks Listed on Bovespa According to Their Relative Efficiency,
MPRA Paper, University Library of Munich, Germany, 2009.
[79]
Y.
Bai, Z. Liang, and X. Li, A permutation
lempel-ziv complexity measure for EEG analysis, Biomedical Signal
Processing and Control 19, 102 (2015).
[80]
M.
Borowska, Multiscale
permutation lempel–ziv complexity measure for biomedical signal
analysis: Interpretation and application to focal EEG signals,
Entropy 23, (2021).
[81]
B.
K. Hillen, G. T. Yamaguchi, J. J. Abbas, and R. Jung, Joint-specific changes in
locomotor complexity in the absence of muscle atrophy following
incomplete spinal cord injury, Journal of NeuroEngineering and
Rehabilitation 10, 1 (2013).
[82]
M.
D. Costa, C.-K. Peng, and A. L. Goldberger, Multiscale analysis of heart
rate dynamics: Entropy and time irreversibility measures, Cardiovascular
Engineering 8, 88 (2008).
[83]
R.
Clausius, T. A. Hirst, and J. Tyndall, The Mechanical Theory of
Heat: With Its Applications to the Steam-Engine and to the Physical
Properties of Bodies (J. Van Voorst, 1867).
[84]
L.
Boltzmann, Weitere Studien über Das wärmegleichgewicht Unter
Gasmolekülen, in Kinetische Theorie II:
Irreversible Prozesse Einführung Und Originaltexte
(Vieweg+Teubner Verlag, Wiesbaden, 1970), pp. 115–225.
[85]
M.
J. Katz, Fractals
and the analysis of waveforms, Computers in Biology and Medicine
18, 145 (1988).
[86]
C.
Sevcik, A procedure to
estimate the fractal dimension of waveforms, (2010).
[87]
A.
Kalauzi, T. Bojić, and L. Rakić, Extracting complexity
waveforms from one-dimensional signals, Nonlinear Biomedical Physics
3, 1 (2009).
[88]
F.
Hasselman, When the
blind curve is finite: Dimension estimation and model inference based on
empirical waveforms, Frontiers in Physiology 4,
(2013).
[89]
R.
F. Voss, Fractals in Nature:
From Characterization to Simulation, in The Science of
Fractal Images, edited by H.-O. Peitgen and D. Saupe (Springer New
York, New York, NY, 1988), pp. 21–70.
[90]
P.
Grassberger and I. Procaccia, Measuring the
strangeness of strange attractors, Physica D: Nonlinear Phenomena
9, 189 (1983).
[91]
P.
Grassberger and I. Procaccia, Characterization of
strange attractors, Phys. Rev. Lett. 50, 346
(1983).
[92]
P.
Grassberger, Generalized
dimensions of strange attractors, Physics Letters A
97, 227 (1983).
[93]
T.
Higuchi, Approach
to an irregular time series on the basis of the fractal theory,
Physica D: Nonlinear Phenomena 31, 277 (1988).
[94]
A.
Petrosian, Kolmogorov Complexity of
Finite Sequences and Recognition of Different Preictal EEG
Patterns, in Proceedings Eighth IEEE Symposium on
Computer-Based Medical Systems (1995), pp. 212–217.
[95]
R.
Esteller, G. Vachtsevanos, J. Echauz, and B. Litt, A comparison of waveform
fractal dimension algorithms, IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 48, 177
(2001).
[96]
C.
Goh, B. Hamadicharef, G. T. Henderson, and E. C. Ifeachor, Comparison of Fractal Dimension Algorithms for the
Computation of EEG Biomarkers for Dementia, in 2nd International Conference on Computational
Intelligence in Medicine and Healthcare (CIMED2005)
(Professor José Manuel Fonseca, UNINOVA,
Portugal, Lisbon, Portugal, 2005).
[97]
C.
F. Vega and J. Noel, Parameters Analyzed of
Higuchi’s Fractal Dimension for EEG Brain Signals, in 2015
Signal Processing Symposium (SPSympo) (2015), pp. 1–5.
[98]
B.
B. Mandelbrot and J. A. Wheeler, The Fractal
Geometry of Nature, American Journal of Physics
51, 286 (1983).
[99]
H.
E. Hurst, Long-term
storage capacity of reservoirs, Transactions of the American Society
of Civil Engineers 116, 770 (1951).
[100]
H. E. Hurst, A suggested statistical model of
some time series which occur in nature, Nature 180,
494 (1957).
[101]
C.-K. Peng, S. V. Buldyrev, S. Havlin, M.
Simons, H. E. Stanley, and A. L. Goldberger, Mosaic organization of
DNA nucleotides, Phys. Rev. E 49, 1685
(1994).
[102]
Z.-Q. Jiang, W.-J. Xie, and W.-X. Zhou, Testing the weak-form
efficiency of the WTI crude oil futures market, Physica A:
Statistical Mechanics and Its Applications 405, 235
(2014).
[103]
S. V. Bozhokin and D. A. Parshin, Fractals
and Multifractals: Textbook (Scientific; Publishing Center
"Regular; Chaotic Dynamics", 2001).
[104]
B. B. Mandelbrot, C. J. G. Evertsz, and Y.
Hayakawa, Exactly
self-similar left-sided multifractal measures, Phys. Rev. A
42, 4528 (1990).
[105]
H. F. Jelinek, N. Elston, and B. Zietsch,
Fractal Analysis: Pitfalls and Revelations in Neuroscience, in
Fractals in Biology and Medicine, edited by G. A. Losa, D.
Merlini, T. F. Nonnenmacher, and E. R. Weibel (Birkhäuser
Basel, Basel, 2005), pp. 85–94.
[106]
B. B. Mandelbrot and B. B. Mandelbrot, The
Fractal Geometry of Nature, Vol. 1 (WH freeman New York,
1982).
[107]
H. Steinhaus, Length, Shape and Area,
in Colloquium Mathematicum, Vol. 3 (Polska Akademia Nauk.
Instytut Matematyczny PAN, 1954), pp. 1–13.
[108]
A. Vulpiani, Lewis fry richardson:
Scientist, visionary and pacifist, Lettera Matematica
2, 121 (2014).
[109]
B. Hayes, Computing science:
Statistics of deadly quarrels, American Scientist
90, 10 (2002).
[110]
B. Mandelbrot, How long is the
coast of britain? Statistical self-similarity and fractional
dimension, Science 156, 636 (1967).
[111]
C. Tsallis, Possible generalization of
boltzmann-gibbs statistics, Journal of Statistical Physics
52, 479 (1988).
[112]
C. Tsallis, Dynamical scenario
for nonextensive statistical mechanics, Physica A: Statistical
Mechanics and Its Applications 340, 1 (2004).
[113]
C. Tsallis, M. Gell-Mann, and Y. Sato, Asymptotically
scale-invariant occupancy of phase space makes the entropy
<i>s<sub>q</sub></i> extensive, Proceedings
of the National Academy of Sciences 102, 15377
(2005).
[114]
C. Tsallis, Economics and finance:
Q-statistical stylized features galore, Entropy 19,
(2017).
[115]
G. Nicolis, I. Prigogine, W. H. Freeman, and
Company, Exploring Complexity: An Introduction (W.H. Freeman,
1989).
[116]
C. Tsallis, Beyond boltzmann–gibbs–shannon
in physics and elsewhere, Entropy 21, (2019).
[117]
E. G. Pavlos, O. E. Malandraki, O. V.
Khabarova, L. P. Karakatsanis, G. P. Pavlos, and G. Livadiotis, Non-extensive statistical
analysis of energetic particle flux enhancements caused by the
interplanetary coronal mass ejection-heliospheric current sheet
interaction, Entropy 21, (2019).
[118]
R. de Oliveira, S. Brito, L. da Silva, and C.
Tsallis, Connecting complex networks to nonadditive entropies,
Scientific Reports 11, 1130 (2021).
[119]
G. Pavlos, A. Iliopoulos, L. Karakatsanis, M.
Xenakis, and E. Pavlos, Complexity
of economical systems., Journal of Engineering Science &
Technology Review 8, (2015).
[120]
A. Bielinskyi, S. Semerikov, O. Serdyuk, V.
Solovieva, V. N. Soloviev, and L. Pichl, Econophysics of
Sustainability Indices, in Proceedings of the Selected
Papers of the Special Edition of International Conference on Monitoring,
Modeling & Management of Emergent Economy
(M3E2-MLPEED 2020), Odessa, Ukraine, July 13-18, 2020,
edited by A. Kiv, Vol. 2713 (CEUR-WS.org, 2020), pp. 372–392.
[121]
G. L. Ferri, M. F. Reynoso Savio, and A.
Plastino, Tsallis’
q-triplet and the ozone layer, Physica A: Statistical Mechanics and
Its Applications 389, 1829 (2010).
[122]
C. Anteneodo and C. Tsallis, Breakdown of
exponential sensitivity to initial conditions: Role of the range of
interactions, Phys. Rev. Lett. 80, 5313
(1998).
[123]
C. TSALLIS, Some open problems in
nonextensive statistical mechanics, International Journal of
Bifurcation and Chaos 22, 1230030 (2012).
[124]
S. Umarov, C. Tsallis, and S. Steinberg, On aq-central limit
theorem consistent with nonextensive statistical mechanics, Milan
Journal of Mathematics 76, 307 (2008).
[125]
D. Stosic, D. Stosic, T. B. Ludermir, and T.
Stosic, Nonextensive triplets
in cryptocurrency exchanges, Physica A: Statistical Mechanics and
Its Applications 505, 1069 (2018).
[126]
A. O. Bielinskyi, A. V. Matviychuk, O. A.
Serdyuk, S. O. Semerikov, V. V. Solovieva, and V. N. Soloviev, Correlational
and Non-Extensive Nature of Carbon Dioxide Pricing Market, in
ICTERI 2021 Workshops, edited by O. Ignatenko, V. Kharchenko,
V. Kobets, H. Kravtsov, Y. Tarasich, V. Ermolayev, D. Esteban, V.
Yakovyna, and A. Spivakovsky, Vol. 1635 (Springer International
Publishing, Cham, 2022), pp. 183–199.
[127]
S. G. Stavrinides et al., On the chaotic nature
of random telegraph noise in unipolar RRAM memristor devices, Chaos,
Solitons & Fractals 160, 112224 (2022).
[128]
A. M. Fraser and H. L. Swinney, Independent coordinates
for strange attractors from mutual information, Phys. Rev. A
33, 1134 (1986).
[129]
J. Theiler, Statistical precision of
dimension estimators, Phys. Rev. A 41, 3038
(1990).
[130]
M. Casdagli, S. Eubank, J. D. Farmer, and J.
Gibson, State
space reconstruction in the presence of noise, Physica D: Nonlinear
Phenomena 51, 52 (1991).
[131]
M. T. Rosenstein, J. J. Collins, and C. J. De
Luca, A practical
method for calculating largest lyapunov exponents from small data
sets, Physica D: Nonlinear Phenomena 65, 117
(1993).
[132]
M. T. Rosenstein, J. J. Collins, and C. J. De
Luca, Reconstruction
expansion as a geometry-based framework for choosing proper delay
times, Physica D: Nonlinear Phenomena 73, 82
(1994).
[133]
H. S. Kim, R. Eykholt, and J. D. Salas, Nonlinear dynamics,
delay times, and embedding windows, Physica D: Nonlinear Phenomena
127, 48 (1999).
[134]
J. V. Lyle, M. Nandi, and P. J. Aston, Symmetric projection
attractor reconstruction: Sex differences in the ECG, Frontiers in
Cardiovascular Medicine 8, (2021).
[135]
T. Gautama, D. Mandic, and M. Van Hulle, A
differential entropy based method for determining the optimal embedding
parameters of a signal, Proceedings 6, 29 (2003).
[136]
M. B. Kennel, R. Brown, and H. D. I. Abarbanel,
Determining embedding
dimension for phase-space reconstruction using a geometrical
construction, Phys. Rev. A 45, 3403 (1992).
[137]
L. Cao, Practical method
for determining the minimum embedding dimension of a scalar time
series, Physica D: Nonlinear Phenomena 110, 43
(1997).
[138]
A. Krakovská, K. Mezeiová, and H. Budáčová, Use
of false nearest neighbours for selecting variables and embedding
parameters for state space reconstruction, Journal of Complex Systems
2015, (2015).
[139]
C. Rhodes and M. Morari, The false nearest
neighbors algorithm: An overview, Computers & Chemical
Engineering 21, S1149 (1997).
[140]
T. Rawald, Scalable and Efficient Analysis
of Large High-Dimensional Data Sets in the Context of Recurrence
Analysis, PhD thesis, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät, 2018.
[141]
F. Takens, Detecting Strange Attractors in
Turbulence, in Dynamical Systems and Turbulence, Warwick
1980, edited by D. Rand and L.-S. Young (Springer Berlin
Heidelberg, Berlin, Heidelberg, 1981), pp. 366–381.
[142]
N. H. Packard, J. P. Crutchfield, J. D. Farmer,
and R. S. Shaw, Geometry from a time
series, Phys. Rev. Lett. 45, 712 (1980).
[143]
K. Shockley and M. Riley, In Recurrence
Quantification Analysis: Theory and Best Practices, 1st ed.
(Springer, New York, 2015).
[144]
J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle,
Recurrence plots of
dynamical systems, Europhysics Letters 4, 973
(1987).
[145]
N. Marwan, N. Wessel, U. Meyerfeldt, A.
Schirdewan, and J. Kurths, Recurrence-plot-based
measures of complexity and their application to heart-rate-variability
data, Phys. Rev. E 66, 026702 (2002).
[146]
C. L. Webber and J. P. Zbilut, Dynamical assessment
of physiological systems and states using recurrence plot
strategies, Journal of Applied Physiology 76, 965
(1994).
[147]
J. P. Zbilut and C. L. Webber, Embeddings and
delays as derived from quantification of recurrence plots, Physics
Letters A 171, 199 (1992).
[148]
A. Tomashin, G. Leonardi, and S. Wallot, Four methods to distinguish
between fractal dimensions in time series through recurrence
quantification analysis, Entropy 24, (2022).
[149]
T. Gneiting, H. Ševčíková, and D. B. Percival,
Estimators of Fractal Dimension: Assessing the Roughness
of Time Series and Spatial Data, Statistical Science
27, 247 (2012).
[150]
K. Falconer, Fractal Geometry: Mathematical
Foundations and Applications (John Wiley & Sons,
2003).
[151]
A. Kalauzi, T. Bojić, and L. Rakić, Extracting complexity
waveforms from one-dimensional signals, Nonlinear Biomedical Physics
3, (2009).
[152]
A. A. Anis and E. H. Lloyd, The expected value of the
adjusted rescaled hurst range of independent normal summands,
Biometrika 63, 111 (1976).
[153]
A. Hacine-Gharbi and P. Ravier, A binning formula of
bi-histogram for joint entropy estimation using mean square error
minimization, Pattern Recognition Letters 101, 21
(2018).
[154]
A. Orozco-Duque, D. Novak, V. Kremen, and J.
Bustamante, Multifractal
analysis for grading complex fractionated electrograms in atrial
fibrillation, Physiological Measurement 36, 2269
(2015).
[155]
A. Faini, G. Parati, and P. Castiglioni, Multiscale assessment of
the degree of multifractality for physiological time series,
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 379, 20200254
(2021).
[156]
M. Costa, A. L. Goldberger, and C.-K. Peng, Multiscale entropy
analysis of biological signals, Phys. Rev. E 71,
021906 (2005).
[157]
I. Prigogine and E. N. Hiebert, From Being
to Becoming: Time and Complexity in the Physical Sciences,
Physics Today 35, 69 (1982).
[158]
J. F.Donges, R. V. Donner, and J. Kurths, Testing time series
irreversibility using complex network methods, Europhysics Letters
102, 10004 (2013).
[159]
M. Zanin, A. Rodríguez-González, E. Menasalvas
Ruiz, and D. Papo, Assessing
time series reversibility through permutation patterns, Entropy
20, (2018).
[160]
R. Flanagan and L. Lacasa, Irreversibility of
financial time series: A graph-theoretical approach, Physics Letters
A 380, 1689 (2016).
[161]
A. Puglisi and D. Villamaina, Irreversible effects
of memory, Europhysics Letters 88, 30004
(2009).
[162]
C. Diks, J. C. van Houwelingen, F. Takens, and
J. DeGoede, Reversibility as a
criterion for discriminating time series, Physics Letters A
201, 221 (1995).
[163]
C. S. Daw, C. E. A. Finney, and M. B. Kennel,
Symbolic approach for
measuring temporal “irreversibility”, Phys. Rev. E
62, 1912 (2000).
[164]
P. Guzik, J. Piskorski, T. Krauze, A.
Wykretowicz, and H. Wysocki, Heart rate asymmetry by
poincaré plots of RR intervals, Biomedical Engineering /
Biomedizinische Technik 51, 272 (2006).
[165]
A. Porta, S. Guzzetti, N. Montano, T.
Gnecchi-Ruscone, R. Furlan, and A. Malliani, Time
Reversibility in Short-Term Heart Period Variability, in
2006 Computers in Cardiology, Valencia, Spain, September 17-20,
2006 (IEEE, 2006), pp. 77–80.
[166]
L. Lacasa, A. Nuñez, É. Roldán, J. M. R.
Parrondo, and B. Luque, Time series
irreversibility: A visibility graph approach, The European Physical
Journal B 85, (2012).
[167]
M. Costa, A. L. Goldberger, and C.-K. Peng, Broken asymmetry of
the human heartbeat: Loss of time irreversibility in aging and
disease, Phys. Rev. Lett. 95, 198102 (2005).
[168]
C. L. Ehlers, J. Havstad, D. Prichard, and J.
Theiler, Low doses of
ethanol reduce evidence for nonlinear structure in brain activity,
The Journal of Neuroscience 18, 7474 (1998).
[169]
C. Yan, P. Li, L. Ji, L. Yao, C. Karmakar, and
C. Liu, Area
asymmetry of heart rate variability signal, BioMedical Engineering
OnLine 16, (2017).
[170]
C. K. Karmakar, A. Khandoker, and M.
Palaniswami, Phase
asymmetry of heart rate variability signal, Physiological
Measurement 36, 303 (2015).
[171]
I. Grosse, P. Bernaola-Galván, P. Carpena, R.
Román-Roldán, J. Oliver, and H. E. Stanley, Analysis of symbolic
sequences using the jensen-shannon divergence, Physical Review E
65, (2002).
[172]
L. Lacasa and R. Flanagan, Time reversibility
from visibility graphs of nonstationary processes, Phys. Rev. E
92, 022817 (2015).
[173]
E. P. White, B. J. Enquist, and J. L. Green, On estimating the exponent of
power-law frequency distributions, Ecology 89, 905
(2008).
[174]
C. J. Gavilán-Moreno and G. Espinosa-Paredes,
Using largest
lyapunov exponent to confirm the intrinsic stability of boiling water
reactors, Nuclear Engineering and Technology 48,
434 (2016).
[175]
A. Prieto-Guerrero and G. Espinosa-Paredes,
Dynamics of
BWRs and Mathematical Models, in Linear and Non-Linear
Stability Analysis in Boiling Water Reactors, edited by A.
Prieto-Guerrero and G. Espinosa-Paredes (Woodhead Publishing, 2019), pp.
193–268.
[176]
D. Nychka, S. Ellner, A. R. Gallant, and D.
McCaffrey, Finding chaos
in noisy systems, Journal of the Royal Statistical Society. Series B
(Methodological) 54, 399 (1992).
[177]
A. Wolf, J. B. Swift, H. L. Swinney, and J. A.
Vastano, Determining lyapunov
exponents from a time series, Physica D: Nonlinear Phenomena
16, 285 (1985).
[178]
M. Sano and Y. Sawada, Measurement of the
lyapunov spectrum from a chaotic time series, Phys. Rev. Lett.
55, 1082 (1985).
[179]
J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, and
S. Ciliberto, Liapunov exponents from
time series, Phys. Rev. A 34, 4971 (1986).
[180]
U. Parlitz, Identification of true
and spurious lyapunov exponents from time series, International
Journal of Bifurcation and Chaos 02, 155 (1992).
[181]
M. Balcerzak, D. Pikunov, and A. Dabrowski, The fastest, simplified
method of lyapunov exponents spectrum estimation for continuous-time
dynamical systems, Nonlinear Dynamics 94, 3053
(2018).
[182]
J. W. Kantelhardt, E. Koscielny-Bunde, H. H. A.
Rego, S. Havlin, and A. Bunde, Detecting
long-range correlations with detrended fluctuation analysis, Physica
A: Statistical Mechanics and Its Applications 295, 441
(2001).
[183]
J. W. Kantelhardt, Fractal and
Multifractal Time Series, in Mathematics of Complexity
and Dynamical Systems, edited by R. A. Meyers (Springer New York,
New York, NY, 2011), pp. 463–487.
[184]
J. W. Kantelhardt, S. A. Zschiegner, E.
Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, Multifractal
detrended fluctuation analysis of nonstationary time series, Physica
A: Statistical Mechanics and Its Applications 316, 87
(2002).
[185]
C.-K. Peng, S. Havlin, H. E. Stanley, and A. L.
Goldberger, Quantification of
scaling exponents and crossover phenomena in nonstationary heartbeat
time series, Chaos: An Interdisciplinary Journal of Nonlinear
Science 5, 82 (1995).
[186]
S. Dutta, Multifractal
properties of ECG patterns of patients suffering from congestive heart
failure, Journal of Statistical Mechanics: Theory and Experiment
2010, P12021 (2010).
[187]
E. Maiorino, L. Livi, A. Giuliani, A.
Sadeghian, and A. Rizzi, Multifractal
characterization of protein contact networks, Physica A: Statistical
Mechanics and Its Applications 428, 302 (2015).
[188]
P. H. Figueirêdo, E. Nogueira, M. A. Moret, and
S. Coutinho, Multifractal analysis
of polyalanines time series, Physica A: Statistical Mechanics and
Its Applications 389, 2090 (2010).
[189]
G. R. Jafari, P. Pedram, and L. Hedayatifar, Erratum:
Long-range correlation and multifractality in bach’s inventions
pitches, Journal of Statistical Mechanics: Theory and Experiment
2012, E03001 (2012).
[190]
Z.-Q. Jiang, W.-J. Xie, W.-X. Zhou, and D.
Sornette, Multifractal analysis of
financial markets: A review, Reports on Progress in Physics
82, 125901 (2019).
[191]
L. Telesca, V. Lapenna, and M. Macchiato, Multifractal
fluctuations in earthquake-related geoelectrical signals, New
Journal of Physics 7, 214 (2005).
[192]
E. G. Yee Leung and Z. Yu, Temporal scaling
behavior of avian influenza a (H5N1): The multifractal detrended
fluctuation analysis, Annals of the Association of American
Geographers 101, 1221 (2011).
[193]
F. Liao and Y.-K. Jan, Using multifractal
detrended fluctuation analysis to assess sacral skin blood flow
oscillations in people with spinal cord injury, The Journal of
Rehabilitation Research and Development 48, 787
(2011).
[194]
L. Telesca, V. Lapenna, and M. Macchiato, Multifractal
fluctuations in seismic interspike series, Physica A: Statistical
Mechanics and Its Applications 354, 629 (2005).
[195]
M. S. Movahed, F. Ghasemi, S. Rahvar, and M. R.
R. Tabar, Long-range correlation
in cosmic microwave background radiation, Phys. Rev. E
84, 021103 (2011).
[196]
P. Mali, S. Sarkar, S. Ghosh, A. Mukhopadhyay,
and G. Singh, Multifractal
detrended fluctuation analysis of particle density fluctuations in
high-energy nuclear collisions, Physica A: Statistical Mechanics and
Its Applications 424, 25 (2015).
[197]
I. T. Pedron, Correlation and
multifractality in climatological time series, Journal of Physics:
Conference Series 246, 012034 (2010).
[198]
R. Rak, S. Drożdż, J. Kwapień, and P.
Oświȩcimka, Detrended
cross-correlations between returns, volatility, trading activity, and
volume traded for the stock market companies, Europhysics Letters
112, 48001 (2015).
[199]
M. Wątorek, S. Drożdż, J. Kwapień, L. Minati,
P. Oświęcimka, and M. Stanuszek, Multiscale
characteristics of the emerging global cryptocurrency market,
Physics Reports 901, 1 (2021).
[200]
T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I.
Procaccia, and B. I. Shraiman, Fractal measures and
their singularities: The characterization of strange sets, Nuclear
Physics B - Proceedings Supplements 2, 501
(1987).
[201]
T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I.
Procaccia, and B. I. Shraiman, Fractal measures and
their singularities: The characterization of strange sets, Phys.
Rev. A 33, 1141 (1986).
[202]
U. Frisch and G. Parisi, Turbulence and
Predictability of Geophysical Flows and Climate Dynamics, in
Proceedings of the International School of Physics“enrico Fermi,"
Course LXXXVIII, Varenna, 1983 (North-Holland, New York,
1985).
[203]
E. A. Ihlen, Introduction to
multifractal detrended fluctuation analysis in matlab, Frontiers in
Physiology 3, (2012).
[204]
P. Oświȩcimka, L. Livi, and S. Drożdż, Right-side-stretched
multifractal spectra indicate small-worldness in networks,
Communications in Nonlinear Science and Numerical Simulation
57, 231 (2018).
[205]
S. Drożdż and P. Oświȩcimka, Detecting and
interpreting distortions in hierarchical organization of complex time
series, Phys. Rev. E 91, 030902 (2015).
[206]
S. Drożdż, R. Kowalski, P. Oświȩcimka, R. Rak,
and R. Gȩbarowski, Dynamical variety of shapes
in financial multifractality, Complexity 2018, 1
(2018).
[207]
M. Dai, C. Zhang, and D. Zhang, Multifractal and
singularity analysis of highway volume data, Physica A: Statistical
Mechanics and Its Applications 407, 332 (2014).
[208]
M. Dai, J. Hou, and D. Ye, Multifractal
detrended fluctuation analysis based on fractal fitting: The long-range
correlation detection method for highway volume data, Physica A:
Statistical Mechanics and Its Applications 444, 722
(2016).
[209]
X. Sun, H. Chen, Z. Wu, and Y. Yuan, Multifractal
analysis of hang seng index in hong kong stock market, Physica A:
Statistical Mechanics and Its Applications 291, 553
(2001).
[210]
E. Canessa, Multifractality in
time series, Journal of Physics A: Mathematical and General
33, 3637 (2000).
[211]
A. Kasprzak, R. Kutner, J. Perelló, and J.
Masoliver, Higher-order
phase transitions on financial markets, The European Physical
Journal B: Condensed Matter and Complex Systems 76, 513
(2010).
[212]
H. D. I. Abarbanel, R. Brown, J. J. Sidorowich,
and L. Sh. Tsimring, The analysis of
observed chaotic data in physical systems, Rev. Mod. Phys.
65, 1331 (1993).
[213]
J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos
and strange attractors, Rev. Mod. Phys. 57, 617
(1985).
[214]
E. L. Platt, Network
Science with Python and NetworkX Quick Start Guide: Explore and
Visualize Network Data Effectively (Packt Publishing,
2019).
[215]
T. H. Cormen, C. E. Leiserson, R. L. Rivest,
and C. Stein, Introduction
to Algorithms, Fourth Edition (MIT Press, 2022).
[216]
P. Lévy, Calcul Des
Probabilités, Par Paul lévy, ...
(Gauthier-Villars, 1925).
[217]
S. Mittnik, S. T. rachev, T. Doganoglu, and D.
Chenyao, Maximum
likelihood estimation of stable paretian models, Mathematical and
Computer Modelling 29, 275 (1999).
[218]
E. F. Fama and R. Roll, Parameter
estimates for symmetric stable distributions, Journal of the
American Statistical Association 66, 331 (1971).
[219]
J. H. McCulloch, Simple consistent
estimators of stable distribution parameters, Communications in
Statistics - Simulation and Computation 15, 1109
(1986).
[220]
J. H. McCulloch, 13 Financial
Applications of Stable Distributions, in Statistical
Methods in Finance, Vol. 14 (Elsevier, 1996), pp. 393–425.
[221]
J. P. Nolan, Maximum Likelihood
Estimation and Diagnostics for Stable Distributions, in
Lévy Processes: Theory and Applications, edited by
O. E. Barndorff-Nielsen, S. I. Resnick, and T. Mikosch
(Birkhäuser Boston, Boston, MA, 2001), pp. 379–400.
[222]
A. Alvarez and P. Olivares, Méthodes
d’estimation pour des lois stables avec des applications en finance,
Journal de La Société Française de Statistique 146, 23
(2005).
[223]
J. P. Nolan, An algorithm for
evaluating stable densities in zolotarev’s (m) parameterization,
Mathematical and Computer Modelling 29, 229
(1999).
[224]
V. M. Zolotarev, One-Dimensional Stable
Distributions (American Mathematical Society, 1986).
[225]
D. Salas-Gonzalez, J. M. Górriz, J. Ramírez, M.
Schloegl, E. W. Lang, and A. Ortiz, Parameterization
of the distribution of white and grey matter in MRI using the α-stable
distribution, Computers in Biology and Medicine 43,
559 (2013).
[226]
P. Lévy, Theorie de l’addition Des
Variables Aleatoires (Gauthier-Villars, 1954).
[227]
T. J. Kozubowski, M. M. Meerschaert, A. K.
Panorska, and H.-P. Scheffler, Operator geometric
stable laws, Journal of Multivariate Analysis 92,
298 (2005).
[228]
B. V. Gnedenko and A. N. Kolmogorov, Limit
Distributions for Sums of Independent Random Variables
(Addison-Wesley, 1968).
[229]
W. H. Dumouchel, Stable
distributions in statistical inference: 1. Symmetric stable
distributions compared to other symmetric long-tailed distributions,
Journal of the American Statistical Association 68, 469
(1973).
[230]
V. N. Soloviev and A. Belinskyi, Methods of Nonlinear
Dynamics and the Construction of Cryptocurrency Crisis Phenomena
Precursors, in Proceedings of the 14th International
Conference on ICT in Education, Research and Industrial
Applications. Integration, Harmonization and Knowledge Transfer. Volume
II: Workshops, Kyiv, Ukraine, May 14-17, 2018, edited
by V. Ermolayev, M. C. Suárez-Figueroa, V. Yakovyna, V. S. Kharchenko,
V. Kobets, H. Kravtsov, V. S. Peschanenko, Y. Prytula, M. S.
Nikitchenko, and A. Spivakovsky, Vol. 2104 (CEUR-WS.org, 2018), pp.
116–127.
[231]
A. Bielinskyi, V. N. Soloviev, S. Semerikov,
and V. Solovieva, Detecting Stock Crashes
Using Levy Distribution, in Proceedings of the Selected
Papers of the 8th International Conference on Monitoring, Modeling
& Management of Emergent Economy,
M3E2-EEMLPEED 2019, Odessa, Ukraine, May 22-24, 2019,
edited by A. Kiv, S. Semerikov, V. N. Soloviev, L. Kibalnyk, H.
Danylchuk, and A. Matviychuk, Vol. 2422 (CEUR-WS.org, 2019), pp.
420–433.
[232]
V. N. Soloviev, A. Bielinskyi, and V.
Solovieva, Entropy Analysis of
Crisis Phenomena for DJIA Index, in
Proceedings of the 15th International Conference on ICT
in Education, Research and Industrial Applications. Integration,
Harmonization and Knowledge Transfer. Volume II: Workshops,
Kherson, Ukraine, June 12-15, 2019, edited by V. Ermolayev, F.
Mallet, V. Yakovyna, V. S. Kharchenko, V. Kobets, A. Kornilowicz, H.
Kravtsov, M. S. Nikitchenko, S. Semerikov, and A. Spivakovsky, Vol. 2393
(CEUR-WS.org, 2019), pp. 434–449.
[233]
V. N. Soloviev, A. Bielinskyi, O. Serdyuk, V.
Solovieva, and S. Semerikov, Lyapunov Exponents as
Indicators of the Stock Market Crashes, in Proceedings of
the 16th International Conference on ICT in Education,
Research and Industrial Applications. Integration, Harmonization and
Knowledge Transfer. Volume II: Workshops, Kharkiv, Ukraine,
October 06-10, 2020, edited by O. Sokolov, G. Zholtkevych, V.
Yakovyna, Y. Tarasich, V. Kharchenko, V. Kobets, O. Burov, S. Semerikov,
and H. Kravtsov, Vol. 2732 (CEUR-WS.org, 2020), pp. 455–470.
[234]
V. N. Soloviev and A. Belinskiy, Complex Systems
Theory and Crashes of Cryptocurrency Market, in Information
and Communication Technologies in Education, Research, and Industrial
Applications, edited by V. Ermolayev, M. C. Suárez-Figueroa, V.
Yakovyna, H. C. Mayr, M. Nikitchenko, and A. Spivakovsky (Springer
International Publishing, Cham, 2019), pp. 276–297.
[235]
A. O. Bielinskyi, S. V. Hushko, A. V.
Matviychuk, O. A. Serdyuk, S. O. Semerikov, and V. N. Soloviev, Irreversibility of
Financial Time Series: A Case of Crisis, in Proceedings of
the Selected and Revised Papers of 9th International Conference on
Monitoring, Modeling & Management of Emergent Economy
(M3E2-MLPEED 2021), Odessa, Ukraine, May 26-28, 2021,
edited by A. E. Kiv, V. N. Soloviev, and S. O. Semerikov, Vol. 3048
(CEUR-WS.org, 2021), pp. 134–150.
[236]
V. N. Soloviev, A. O. Bielinskyi, and N. A.
Kharadzjan, Coverage of the
Coronavirus Pandemic Through Entropy Measures, in 3rd
Workshop for Young Scientists in Computer Science and Software
Engineering (CS and SE and SW 2020), Kryvyi Rih,
Ukraine, November 27, 2020, edited by A. E. Kiv, S. O.
Semerikov, V. N. Soloviev, and A. M. Striuk, Vol. 2832 (CEUR-WS.org,
2021), pp. 24–42.
[237]
A. O. Bielinskyi, V. N. Soloviev, S. O.
Semerikov, and V. V. Solovieva, IDENTIFYING STOCK MARKET
CRASHES BY FUZZY MEASURES OF COMPLEXITY, Neuro-Fuzzy Modeling
Techniques in Economics 10, 3 (2021).
[238]
A. O. Bielinskyi, A. E. Kiv, Y. O. Prikhozha,
M. A. Slusarenko, and V. N. Soloviev, Complex Systems and Physics
Education, in Proceedings of the 9th Workshop on Cloud
Technologies in Education, CTE 2021, Kryvyi Rih, Ukraine,
December 17, 2021, edited by A. E. Kiv, S. O. Semerikov, and M. P.
Shyshkina, Vol. 3085 (CEUR-WS.org, 2021), pp. 56–80.
[239]
A. O. Bielinskyi and V. N. Soloviev, Complex Network
Precursors of Crashes and Critical Events in the Cryptocurrency
Market, in Proceedings of St Student Workshop on Computer
Science and Software Engineering, CS and SE@SW
2018, Kryvyi Rih, Ukraine, November 30, 2018, edited by S. O.
Semerikov, A. M. Striuk, V. N. Soloviev, and A. E. Kiv, Vol. 2292
(CEUR-WS.org, 2028), pp. 37–45.
[240]
A. Kiv, A. Bryukhanov, A. Bielinskyi, V.
Soloviev, T. Kavetskyy, D. Dyachok, I. Donchev, and V. Lukashin, Irreversibility of
Plastic Deformation Processes in Metals, in Information
Technology for Education, Science, and Technics, edited by E.
Faure, O. Danchenko, M. Bondarenko, Y. Tryus, C. Bazilo, and G. Zaspa
(Springer Nature Switzerland, Cham, 2023), pp. 425–445.
[241]
A. Bielinskyi, V. Soloviev, V. Solovieva, A.
Matviychuk, and S. Semerikov, The Analysis of
Multifractal Cross-Correlation Connectedness Between Bitcoin and the
Stock Market, in Information Technology for Education,
Science, and Technics, edited by E. Faure, O. Danchenko, M.
Bondarenko, Y. Tryus, C. Bazilo, and G. Zaspa (Springer Nature
Switzerland, Cham, 2023), pp. 323–345.
[242]
A. O. Bielinskyi, V. N. Soloviev, V. Solovieva,
S. O. Semerikov, and M. A. Radin, Recurrence
Quantification Analysis of Energy Market Crises: A Nonlinear Approach to
Risk Management, in Proceedings of the Selected and Revised
Papers of 10th International Conference on Monitoring, Modeling
& Management of Emergent Economy
(M3E2-MLPEED 2022), Virtual Event, Kryvyi Rih, Ukraine,
November 17-18, 2022, edited by H. B. Danylchuk and S. O.
Semerikov, Vol. 3465 (CEUR-WS.org, 2022), pp. 110–131.
[243]
A. O. Bielinskyi, V. N. Soloviev, S. V. Hushko,
A. E. Kiv, and A. V. Matviychuk, High-Order Network
Analysis for Financial Crash Identification, in Proceedings
of the Selected and Revised Papers of 10th International Conference on
Monitoring, Modeling & Management of Emergent Economy
(M3E2-MLPEED 2022), Virtual Event, Kryvyi Rih, Ukraine,
November 17-18, 2022, edited by H. B. Danylchuk and S. O.
Semerikov, Vol. 3465 (CEUR-WS.org, 2022), pp. 132–149.
[244]
A. Kiv, A. Bryukhanov, V. Soloviev, A.
Bielinskyi, T. Kavetskyy, D. Dyachok, I. Donchev, and V. Lukashin, Complex network methods
for plastic deformation dynamics in metals, Dynamics
3, 34 (2023).
[245]
A. A. B. Pessa and H. V. Ribeiro, ordpy: A
Python package for data analysis with permutation entropy and ordinal
network methods, Chaos: An Interdisciplinary Journal of
Nonlinear Science 31, 063110 (2021).
[246]
R. Albert and A.-L. Barabási, Statistical mechanics of
complex networks, Rev. Mod. Phys. 74, 47
(2002).
[247]
A.-L. Barabási and R. Albert, Emergence of scaling
in random networks, Science 286, 509 (1999).
[248]
J. Travers and S. Milgram, An
Experimental Study of the Small World Problem, in Social
Networks, edited by S. Leinhardt (Academic Press, 1977), pp.
179–197.
[249]
[250]
N. N. Taleb, The Black Swan: Second
Edition: The Impact of the Highly Improbable Fragility (Random
House Publishing Group, 2010).